Липиды и их функции

Липиды и их функции

Функции липидов

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Жиры, их строение и роль в клетке.

Жиры вместе с другими жироподобными веществами |и носят к группе липидов (греч. lipos — жир). По химиче­ской структуре жиры представляют собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Они неполярны, практически нерастворимы в воде, но хорошо растворяются в неполяр­ных жидкостях, таких как бензин, эфир, ацетон. Содержа­ние в клетках жира обычно невелико — 5—10% от сухого вещества. Однако в клетках некоторых тканей животных (подкожной клетчатке, сальниках) их содержание может достигать до 90%.

Функции жиров:

1. Энергетическая функция. При окислении жиров об­разуется большое количество энергии, которая расходуется на процессы жизнедеятельности. При окислении 1 г жира освобождается 38,9 кДж энергии.

2. Структурная функция. Липиды принимают участие в построении мембран клеток всех органов и тканей.

3. Запасная функция. Жиры могут накапливаться в клетках и служить запасным питательным веществом. Жиры накапливаются в семенах растений (подсолнечник, горчица), откладываются под кожей у животных.

4. Функция терморегуляции. Жиры плохо проводят тепло. У некоторых животных, откладываясь под кожей (у китов, ластоногих), толстый слой подкожного жира защищает их от переохлаждения.

5. Жиры могут служить источником эндогенной воды При окислении 100 г жира выделяется 107 мл воды. Благо даря этому многие пустынные животные могут длительное время обходиться без воды (верблюды, тушканчики).

Жиры, их строение и роль в клетке. 5 (100%) 2 votes

На этой странице искали :

  • роль жиров в клетке
  • функции жиров в клетке
  • жиры в клетке
  • строение жиров
  • Функция жиров в клетке

Сохрани к себе на стену!

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

  • ферментативная;
  • сигнальная;
  • регуляторная

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Липиды

Липиды (от греч. λίπος, lípos — жир) — это жирные кислоты и их производные. Липиды являются важнейшим классом природных соединений, принимающих участие во многих биологических процессах.

Классификация липидов

Различают три основных группы липидов: нейтральные липиды, фосфолипиды и гликолипиды. В организмах встречаются также отдельные группы минорных липидов (фосфатидилглицерин, липопептиды, диольные липиды и др.).

Нейтральные липиды. Среди нейтральных липидов наиболее распространены жирные кислоты (алифатические монокарбоновые кислоты: R-COOH). В настоящее время известно свыше 800 природных жирных кислот, которые условно можно разделить на три группы: насыщенные (пальмитиновая, стеариновая и др.), моноеновые (олеиновая, эруковая и др.) и полиеновые (линолевая, линоленовая, арахидоновая, эйкозапентаеновая, докозагексаеновая и др.) (Рис. 1).

Рис.1. Структура насыщенных и ненасыщенных жирных кислот

Наиболее богато пальмитиновой кислотой (более 50%) пальмовое масло. Она встречается также в животных жирах и хлопковом масле (25%). Стеариновой кислоты обычно в жирах не более 10%. Исключением является бараний жир, в котором ее более 30%. Помимо этих двух насыщенных жирных кислот в природе достаточно широко распространены лауриновая и миристиновая кислоты. Олеиновой кислоты больше всего в оливковом и салатном подсолнечном масле (около 80%). В других жирах и маслах ее содержится от 5 до 40%. В маслах из семян горчицы и рапса до 50% другой моноеновой жирной кислоты — эруковой. Главной составляющей многих растительных масел (подсолнечного, соевого, кукурузного, хлопкового) является линолевая кислота, ее содержание в них составляет 50-70%. В льняном масле больше всего линоленовой кислоты. Жиры рыб и других морских животных богаты полиеновыми: эйкозапентаеновой и докозагексаеновой. Арахидоновая кислота входит в состав фосфолипидов млекопитающих. Все полиеновые жирные кислоты являются обязательными компонентами фосфолипидов биомембран.

В группу нейтральных липидов входят также триглицериды, воски, эфиры стеринов, N-ацилэтаноламиды жирных кислот и церамиды, состоящие из сфингозина (2-амино-4-октадекен-1,3-диола) и жирной кислоты. Воски и эфиры стеринов имеют общую химическую формулу. Наиболее известны воски — продукты деятельности насекомых (пчелиный), животных (ланолин) и растений. Триглицериды являются основным веществом всех жиров и масел. N-ацилэтаноламиды и церамиды – ценные биологически активные вещества. В первую очередь это относится к этаноламидам жирных кислот. В 1992 году начался новый период в истории этого класса липидов: этаноламид арахидоновой кислоты («анандомид») был обнаружен в мозгу животных как вещество, связывающееся с рецепторами каннабиноидов.

Фосфолипиды – это сложные липиды, содержащие фосфорную кислоту. Они содержатся во всех живых клетках, являются важнейшими компонентами биологических мембран нервной ткани. В составе липопротеидов крови участвуют в транспорте жиров, жирных кислот и холестерина. Фосфолипиды довольно широко используются в пищевой и фармацевтической промышленности.

Фосфатидилхолин — главный фосфолипид большинства типов животных. Его содержание обычно составляет не менее 50% суммы фосфолипидов. Вторым по значению фосфолипидом у животных обычно является фосфатидилэтаноламин. В большинстве бактерий фосфатидилхолина нет, а более 60-70% их фосфолипидов составляет фосфатидилэтаноламин. Оба липида присутствуют в большинстве растений, для этих организмов очень важен фосфатидилглицерин. Это единственный фосфолипид синезеленых водорослей, главный фосфолипид фотосинтетического аппарата всех растений. Сфингомиелин является важным компонентом клеток эволюционно продвинутых типов животных. В эритроцитах некоторых млекопитающих, в частности овец, он заменяет фосфатидилхолин в качестве главного фосфолипида. Заслуживают упоминания и несколько других фосфолипидов: фосфатидилинозит, дифосфатидилглицерин (кардиолипин), фосфатидилсерин, фосфатидная кислота.

Гликолипиды — (от греч. γλυκός, glykos — сладкий и греч. λίπος, lípos — жир) — сложные липиды, образующиеся в результате соединения липидов с углеводами. Гликолипиды входят в состав клеточных мембран. Они широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Гликолипиды локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности. Гликолипиды растений играют важную роль в процессе фотосинтеза. Главной формой гликолипидов в животных тканях являются гликосфинголипиды. Они содержат церамид, состоящий из сфингозина (2-амино-4-октадекен-1,3-диола) и жирной кислоты, а также один или несколько остатков сахаров. Двумя простейшими соединениями этой группы являются галактозилцерамид и глюкозилцерамид. Галактозилцерамид — главный гликосфинголипид мозга и других нервных тканей, но в небольших количествах он встречается и во многих других тканях. Простые гликосфинголипиды в тканях, отличных от нервной, представлены главным образом глюкозилцерамидом; в небольших количествах он имеется и в ткани мозга.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны.

Функции липидов

Структурная Фосфолипиды вместе с белками образуют биологические мембраны.

Энергетическая При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.

Защитная и теплоизоляционная Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

Смазывающая и водоотталкивающая Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

Регуляторная Некоторые липиды являются витаминами (D3, F) и гормонами, участвуют в передаче нервного импульса. Многие гормоны являются производными холестерина, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерина, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

Историческая справка

Липиды (животные жиры, растительные масла) используют с древнейших времен как продукты питания, для приготовления лекарственных и косметических препаратов, лакокрасочных материалов, а также для освещения. С начала XVIII века липиды стали использовать для мыловарения, а в XX веке — для приготовления моющих средств, эмульгаторов, детергентов, пластификаторов и технологических смазок. Первый элементный анализ липидов выполнен в начале XIX века А. Лавуазье, а первые исследования по выяснению химического строения липидов принадлежат К. Шееле и М. Шеврёлю. Впервые синтезы триглицеридов осуществили М. Бертло в 1854 г. и Ш. Вюрц в 1859 г. Фосфолипиды были выделены М. Гобли в 1847 г., а затем получены в более чистом виде Ф. А. Хоппе-Зейлером в 1877 г. К этому времени уже было установлено строение ряда важнейших жирных кислот. Дальнейшую историю изучения липидов можно разделить на три периода, различающиеся по методическому уровню исследований. В 1880-1950 гг. липиды исследовали традиционными методами органической химии, второй этап (1950-1970 гг.) характеризуется широким применением методов хроматографии, а последний (70-80-е гг. и до настоящего времени) — использованием таких физико-химических методов, как масс-спектрометрия, оптическая спектроскопия и радиоспектроскопия, флуоресцентный анализ и др.

Рекомендуемая литература

Тейлор Д., Грин Н., Стаут У. Биология. В 3-х томах. М.: Мир. 2005. С. 1341.

Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: в двух томах. М.: Мир, 2004. Т.1. С. 381.

Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 1-3. С. 1056.

Овчинников Ю.А. Биоорганическая химия. М.: Просвещение, 1987. С. 815.

Бартон Д., Оллис У.Д. Общая органическая химия. Т.11. Липиды, углеводы, макромолекулы, биосинтез. М.: Химия, 1986. С. 736.

См. также статью «Липиды» в категории «Биохимия».


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *